SOFTWARE

Risky Business

7 Myths about Software Engineering
That Impact Defense Acquisitions

ENGINEERING

DR. BARRY BOEHM « LT. GEN PETER KIND, USA (RET.) -

“About the only thing you can do with an
F-22 without software is to take a picture
of it.”

—Unidentified Air Force General

ithout knowing it, many

DoD project managers

make significant program-

matic and technical deci-

sions based on misunder-
standing software technology and
systems engineering activities. While
many of these decisions don't seem soft-
ware-related, they often cause software-
induced project overruns and negative
impacts on downstream effectiveness,
system enhancement and supportabil-
ity—and program managers' career
paths.

DoD PMs are not alone in this difficulty.
The figures from the 1999 Standish
Group's survey show only a 26 percent
overall success rate for software-inten-
sive systems, with only 18 percent of
government projects succeeding, and
zero percent of any projects over $10
million. Historically, a typical software-
intensive project overruns its budget
and schedule by a factor of 2 and de-
livers about 60 percent of the required
functionality.

In this article we present 7 myths that
were identified by a defense software
engineering science and technology

DR. RICHARD TURNER

summit convened by the Deputy Under
Secretary of Defense for Science and
Technology in August 2001—all of
which have contributed to poor acqui-
sition decisions and to the resulting over-
runs and poor performance.

Software is the Key

Why do PMs need to be concerned
about how programmatic decisions im-
pact software? Because, software crisis
or not, software plays an increasingly
critical role in defense systems. While
hardware and weapons platforms will
remain relatively stable, functionality
and adaptability will be added through
improved resident software or access
to additional capabilities through soft-
ware-enabled, network-centric appli-
cations.

Defense systems are increasingly per-
forming critical functions autonomously
via software. Functions like target and
weapon acquisition, selection and fir-
ing, terrain following, re-supply, sensor
data prioritization, and health checking
and healing of network-centered infra-
structure and components are currently
in limited operation and will continue
to propagate through more and more
systems. Future systems require real-
time coordination of the software oper-
ating in a variety of platforms, weapons,
and sensors; and the complexity of the
systems and software will increase sig-
nificantly to perform these functions.

Boehm is currently the Director of the University of Southern California (USC) Center for Software Engineering. At the Defense Advanced Research Projects
Agency (DARPA), he managed 20 program managers and over $1 billion in acquisitions. He has over 30 years' experience as a DoD contractor. A retired Army
lieutenant general, Kind is currently a Research Staff Member with the Institute for Defense Analyses. He has extensive IT, PEO, and operational experience in the
Army and the private sector. He created and managed the White House Information Coordination Center for the Y2K Rollover within cost, performance, and
schedule. Turner is the Assistant Deputy Director for Software Engineering and Acquisition in the Software Intensive Systems Office, OUSD(AT&L), and a Research
Professor at The George Washington University. He co-authored the book CMMI Distilled (Addison-Wesley).

74 PM : MAY-JUNE 2002

A History of Non-Fixes

Numerous reviews and reports have
been published to address the software
problem. The 2000 Defense Science Board
Task Force Report on Defense Software
cited 20 years of studies and recom-
mendations. Unfortunately, of the 134
unigue recommendations—all of which
were judged still applicable—only 3
have been implemented, and only 18
are included in policy.

myths that contribute to the current state
of software acquisition.

Myth No. 1:

COTS [Commercial Off-the-Shelf] and
commercial practices are the answer.
Fact:

COTS works well in some situations but
greatly increases risk in others. Commer-
cial practices are optimized around rapidly
bringing products to market, but with lower-

- the pitfalls of unexpected“
I'Eﬂllt}’ checks late in the day.

Why haven't these recommendations
been implemented? Our experience in-
dicates that believing in myths is easier
than dealing with the thorny underly-
ing issues. Let's look at 7 widely believed

quality attribute levels than DoD mission-
critical systems require.

For the last dozen years the common
wisdom has been that COTS was the

way in which DoD would solve its soft-
ware problems and vault into the 21
century as a lean, mean, acquiring ma-
chine. While the use of COTS in infor-
mation processing has been reasonably
successful in many cases, those in charge
of developing software-intensive sys-
tems designed for unique DoD missions
have frequently found COTS more a
burden than a benefit.

Real problems may emerge when inte-
grating COTS into a system with the
typical DoD life span. The short COTS
software release rate and ongoing plat-
form evolution make it extremely diffi-
cult to merge with the long develop-
ment and sustainment programs
common in today's systems. (For ex-
ample, the Cheyenne Mountain air de-
fense software system was first devel-
oped in the 19505 and continues today.)

When verifying system quality, safety
and security, the proprietary “black box”
nature of COTS can force unrealistic re-
quirements on other components, rais-
ing cost and delaying programs. Inter-
operability can be difficult to achieve
with COTS software that adds or
changes features rapidly with little at-
tention to backward compatibility.

With COTS the PM gives up control
over program functionality and sched-
ule, and incurs integration and testing
costs with attendant schedule delays.
Functionality may change based on
needs of marketing and the principal
customer base, adversely affecting the
design and operation of the DoD appli-
cation.

Security, safety, and quality of COTS
are largely unknown; software may
contain Trojan horse code or ex-
ploitable weaknesses. Current tools are
inadequate to discover and assess these
faults, and corrections are only done
by vendors according to their sched-
ules—if corrected at all. Finally, defense
systems are larger and more complex.
Integration is problematical under the
best of conditions; scalability is exac-
erbated with components not designed
for a given architecture, interfaces, and
terminology.

PM : MAY-JUNE 2002 75

7 Myths About Software Engineering
That Impact Defense Acquisition

Myth No. 1:

COTS and commercial practices are
the answer.

Fact:

COTS works well in some situations but
greatly increases risk in others. Com-
mercial practices are optimized around
rapidly bringing products to market, but
with lower-quality attribute levels than
DoD mission-critical systems require.

Myth No. 2:

Commercial industry will do DoD's
needed software research.

Fact:

Commercial industry does mass mar-
ketplace research.

Myth No. 3:

The problem is software and pro-
gramming methodology.

Fact:

The problem is integrating software and
system concerns.

Myth No. 4:
Software Engineering Institute Ca-
pability Maturity Model (SEI CMM)

“Anything sufficiently complex is to the lay-
man indistinguishable from magic.”
—Arthur C. Clarke

The COTS myth, while pervasive, can
be countered in several ways. First, pro-
gram managers should invest in thor-
ough risk-driven COTS assessments be-
fore committing to use commercial
products. DoD should establish more
flexible COTS policies that recognize
defense system realities and not force
program managers into a risky, limited
technology trade space.

DoD should also work closely with
COTS vendors to influence product sta-
bility, feature sets, and verifiable qual-

76 PM : MAY-JUNE 2002

for Software (or Capability Maturity
Model Integration—CMMI) is the
answer.

Fact:

Process maturity is only one aspect of
software engineering.

Myth No. 5:

Evolutionary Acquisition is the an-
swer.

Fact:

Evolutionary acquisition is a work in
progress.

Myth No. 6:

It's software—we can fix it later (add
security, quality, other "-ilities").
Fact:

Most "-ilities" must be architected in,
and can't be easily added later.

Myth No. 7:

Create great components and the
software engineering will take care
of itself.

Fact:

That's DoD's current course, and the
problems aren't going away.

ity. Finally, establishing COTS test beds
and technology watch initiatives, cou-
pled with strong configuration man-
agement, can support broader COTS
validation and interoperability investi-
gations.

Myth No. 2:

Commercial industry will do DoD's
needed software research.

Fact:

Commercial industry does mass market-
place research.

From the halls of Congress to the halls
of the Pentagon and the ears of the pro-
gram managers, the direction to depend
on commercial vendors for software en-

gineering research and development has
been strong and clear. Unfortunately,
DoD has specific needs that don't match
well with industry's goals. Technology
companies don't have the resources,
need, desire, or profit motive to address
the extra-hard problems—problems
such as ultra-reliable agent-based sys-
tems, and achieving interoperability and
process coordination across dozens of
simultaneously evolving systems-of-sys-
tems.

An example of a system dependent on
this type of technology is the Army's Fu-
ture Combat System. The Army envi-
sions a distributed, embedded, high-as-
surance, agent-based system of systems
that will provide warfighters a real-time
common operating picture so effective
that the protection from its superior in-
formation capabilities will replace 20
tons of armor. Some of the supporting
technology research is being sponsored
by the Defense Advanced Research Pro-
jects Agency (DARPA). However, as
members of the President's Information
Technology Advisory Committee
(PITAC), two major commercial tech-
nology leaders agreed that neither of
their companies had the motivation to
address this kind of problem.

There are several ways to counter this
myth and its effects on defense systems.
Program managers should assess the de-
gree to which commercial products and
research priorities are the same as their
programs and leverage any commonal-
ity. On a larger scale, DoD needs to in-
crease its emphasis on sponsored soft-
ware engineering science and technology
and better utilize its existing assets
through improved research coordina-
tion.

DoD funds a significant amount of hard-
ware manufacturing technology re-
search—making a similar investment in
software engineering (the software
equivalent to manufacturing) and re-
search would appear beneficial. DoD
can also partner with industry to ad-
dress specific needs and increase de-
fense representation in standards de-
velopment bodies and leading-edge
technology venues.

Myth No. 3:

The problem is software and program-
ming methodology.

Fact:

The problem is integrating software and
system concerns.

Software has been widely blamed for
program cost and schedule overruns
and for systems that fail to meet their
specifications. However, software is not
always the real culprit. In some cases,
poor acquisition decisions and systems
engineering cause problems that in-
evitably manifest in the software. In oth-
ers, software requirements are belatedly
defined because software ends up as the
catchall for things not done in other
components.

These late software bail-outs often put
high-risk software on a program's crit-
ical path. The OSD Tri-service Assess-
ment Initiative has performed systemic
analysis on three years of independent
expert reviews of software-intensive sys-
tem programs. This analysis confirms
that although failures may be highlighted
in software, actual causes stem from
many different programmatic and tech-
nical factors. Understanding the rela-
tionship of software to these factors be-
fore taking any corrective action is
essential.

Countering this myth calls for a broader
approach to improving software acqui-
sitions. Programs should focus on early
validation of software/system solution
feasibility, using spiral-oriented criteria
found in Life Cycle Objective and Life
Cycle Architecture milestones. Software
engineering research can help identify
ways to support better decision making
on software and systems engineering is-
sues.

DoD should develop coherent policy for
software and systems engineering that
acknowledges the challenges and works
rationally to achieve more realistic ex-
pectations, schedules, and development
environments. DoD should make qual-
ity software development personnel and
environments more important than least
cost in software acquisition—it will be
far cheaper in the long run.

DoD should focus
more attention
—research and

practice—on the
engineering of

software-intensive
systems that are
well-defined, have
robust and
extensible
architectures,
and maintain
the same
engineering
integrity as the

hardware platforms

within which
they are deployed .

Myth No. 4:

Software Engineering Institute Capa-
bility Maturity Model (SEI CMM) for
Software (or CMMI-Capability Maturity
Model Integration) is the answer.
Fact:

Process maturity is only one aspect of soft-
ware engineering

Arguably the greatest impact on soft-
ware engineering in the past decade has
been the Software Engineering Institute's
Capability Maturity Model for Software.
It brings a focus on discipline and
process improvement to an industry that
still reels from seemingly ever increas-
ing expectations. The latest generation
of SEI tools, Capability Maturity Model
Integration, extends the CMMI to other

disciplines, including systems engi-
neering. However, as with any tool,
CMM can't be everything in every con-
text. Having mature processes doesn't
guarantee that the requirements, archi-
tectures, and other system aspects such
as information security are adequate.

Process maturity does not guarantee
community-wide innovative solutions
or resolve complex teaming and sub-
contractor relationships among high-
and low-maturity organizations. It can't
address the technical challenges of the
software-intensive systems under de-
velopment, make up for poor acquisi-
tion decisions, or work effectively with
low-maturity acquisition organizations.
Process maturity is a necessary but not
sufficient condition to guarantee qual-
ity, cost effectiveness, and technological
innovation.

Overcoming this myth requires lever-
aging the strengths of process maturity
without abdicating responsibility be-
cause a contractor is CMM Level 3 or
better. PMs need to be in charge. DoD
should continue to support developer
and maintainer process improvement
as part of an overall software and sys-
tems engineering quality and cost-ef-
fectiveness initiative.

Process improvement strategies should
also be implemented within the acqui-
sition organizations so as to maximize
the benefits to the government of high-
maturity contractors. PMs need to bal-
ance process initiatives with people,
product, product line, and technology
initiatives that focus attention on sys-
temic issues rather than focus on process
alone.

Myth No. 5:

Evolutionary Acquisition (EA) is the an-
Swer.

Fact:

Evolutionary Acquisition is a work in
progress.

Evolutionary Acquisition is seen as a
way to improve some of the system ac-
quisition problems related to software,
particularly where requirements are ei-
ther unknown or evolving. Based on the

PM : MAY-JUNE 2002 77

Software Acquisition Resources for PMs

= Air Force Software Technology Support Center

(wwwistsc.hill.af.mil)

= Center for Software Engineering at USC (sunset.usc.edu)
« Defense Acquisition University (www.dau.mil)

« Institute for Defense Analyses (Www.ida.org)

= International Council on Systems Engineering (INCOSE)

(Www.incose.org)

* OUSD Software Intensive Systems, Defense Software
Collaborators, and Tri-service Assessment Initiative

(www.acq.osd.mil/ara/sis).

« Software Engineering Institute of Carnegie Mellon University

(wwwi.sei.cmu.edu)

concept of the spiral software develop-
ment life cycle, EA is ideally a risk-dri-
ven approach that adjusts requirements
and priorities based on usage experi-
ence. The myth lies in assuming wide-
spread ability to actually execute such
a program. Although EA has worked
very well with knowledgeable acquirer-
developer teams, many PMs don't have
access to the essential knowledge, skills,
or tools to manage EA. For the complex
acquisitions currently envisioned (e.g.,
rapidly evolving, COTS-intensive sys-
tems of systems), current tools are sim-
ply not up to the task.

In some cases, the underlying science
for basic management activities is not
completely understood. Further com-
plicating EA implementation is the dif-
ficulty in establishing contracts that meet
DoD regulations and still provide for an
evolutionary approach.

Countering the effects of this myth
means making sure that EA is appro-
priate for your program, and if it is, in-
vesting the necessary effort up front to
ensure the necessary expertise and in-
frastructure is available. Guarding against
spiral development/EA pitfalls is im-
portant. For example, certain aspects of
a true spiral process are required for it
to be effective, but often PMs are led into
implementing hazardous spiral look-
alikes that don't provide these key com-
ponents.

78 PM : MAY-JUNE 2002

Software engineering science and tech-
nology can help build the theoretical
and practical foundations for success-
ful Evolutionary Acquisition. Most im-
portantly, contracting must be modified
to lend stronger support to non-water-
fall software acquisitions.

Myth No. 6:

It's software—uwe can fix it later (add se-
curity, quality, other “-ilities”).

Fact:

Most “~ilities” must be architected in, and
can't be easily added later.

One of the most widely held myths
about software is the idea that incom-
plete or prototype software can be “hard-
ened” for use in operational environ-
ments. In reality, this is almost always
impossible and leads to missed sched-
ules or worse. The software and system
architecture must be designed from the
beginning to accommodate stringent se-
curity, reliability, fault tolerance, and
other operational requirements. As early
as 1975, Fred Brooks, a noted Profes-
sor of Computer Science at Chapel Hill,
documented a factor-of-9 increase in ef-
fort to go from a running computer pro-
gram to a software system product.

Even further, re-designing significant
amounts of software that have already
been implemented is simply too com-
plex and intricate a task. The result is
that the developers have to go back to

square one and essentially rebuild the
system based on a more appropriate ar-
chitecture.

This myth of infinitely malleable soft-
ware can be countered by focusing on
early validation of software/system so-
lution feasibility and providing adequate
funding in the architectural develop-
ment stages of a system. One rule of
thumb to follow: Never deploy prototypes
that haven't been based on a planned, ar-
chitecturally based evolutionary program.

If deployment or reuse of prototype
software is a possibility, insist on more
rigorous design and coding standards
in prototyping environments. The im-
plementation of product lines that lever-
age good architectures can greatly re-
duce the cost of the “-ility” requirements
in similar systems.

Myth No. 7:

Create great components and the soft-
ware engineering will take care of itself.
Fact:

That's DoD's current course, and the prob-
lems aren't going away.

The National Science Foundation spon-
sored a workshop on software engi-
neering in 1999 that identified quality
components (networks, databases, user
interface packages, agents, filters, etc.)
as only one aspect of successful sys-
tems. Of as much importance were the
software process, development and
support environment, architecture, and
tools.

Countering this myth includes making
sure the component innovators know
how to develop robust software, per-
haps through process maturity assess-
ments. Carefully assess the technology
readiness of hot new software compo-
nents before depending on them for sys-
tem success. Wherever possible, use
open systems and other standards that
support component integration. Most
importantly, DoD should focus more at-
tention—research and practice—on the
engineering of software-intensive sys-
tems that are well-defined, have robust
and extensible architectures, and main-
tain the same engineering integrity as

the hardware platforms within which
they are deployed.

“The world will never need more than five
computers.”

—T .J. Watson

(First President of IBM)
Programs That
Beat the Myths

Programs do exist that have beaten the
myths and can be used as role models
for successfully achieving complex soft-
ware goals. The January 2002 issue of
CrossTalk: The Journal of Defense Software
Engineering announced the Top 5 Gov-
ernment Quality Software Projects for
2001. In addition to the CrossTalk award
winners, other examples of myth-beat-
ing programs include:

« The Command Center Processing and
Display System—Replacement for the
Airr Force used several innovative tech-
niques and is presented as a case study
in Walker Royce's Software Project
Management.

e The Army's Advanced Field Artillery
Tactical Data System now interoper-
ates with the Joint Surveillance Tar-
get Attack Radar System and unat-
tended aerial vehicles and is acclaimed
in the September-October 2001 Field
Artillery Journal.

« The Navy's AEGIS program has suc-
cessfully evolved across several gen-
erations of computer and software
technology for over 20 years.

So What Now?

As Fred Brooks said in 1986, there are
no silver bullets. And, truthfully, there
are far too few lead bullets that will work
as well for tomorrow's software projects
as well as they do today. But by replac-
ing myth with fact, program managers
can focus on the software issues critical
to the success of their programs and
avoid the pitfalls of unexpected reality
checks late in the day. PMs need to un-
derstand the decisions that affect soft-
ware aren't necessarily identified as soft-
ware decisions. Any decision that
impacts systems engineering, require-
ments, technology insertion, or similar
concerns is highly likely to impact soft-
ware.

Dnil funds h
significant amount
‘of hardware =

““manufacturing
 technology =
. research—
-'.'.making a similar
" investment =

in software
| engineering =
 (the software
" equivalent to
“manufacturing)
~ and research

_-' would seem =
o beneficial.

“It is not necessary to change. Survival is
not mandatory.”
—W. Edwards Deming

Summarizing the recommendations in
countering the myths, program man-
agers should:

< Invest in thorough risk-driven COTS
assessments before commitment.

= Make sure that commercial vendor
priorities are consistent with program
needs.

« Focus on early validation of soft-
ware/system solutions through archi-
tectural reviews.

= Use process maturity as an indicator,
not a guarantee.

« Make sure your program has access
to sufficient expertise to implement
the Evolutionary Acquisition model,
and to use risk-driven spiral processes.

< Focus on a quality system/software
architecture and consider software
product line approaches where feasi-
ble.

< Use open systems where possible and
make sure any software components
are appropriate and mature.

Just as critical are actions on the part of
the defense acquisition community. DoD
should require broader software edu-
cation for key program personnel. More
software engineering science and tech-
nology funding can produce develop-
ment and acquisition technology that
could make the right way to acquire soft-
ware-intensive systems the easy way.
DoD is moving to implement the re-
maining Defense Science Board recom-
mendations, but progress is slow and
hampered by existing policy and infra-
structure. Most critical is the need to
bring acquisition policy into line with
weapons systems' software needs so that
programs can implement approaches
like Evolutionary Acquisition without
running afoul of constraining rules and
contracting practices.

Software is moving from the world of
myths to the world of facts. An in-
creasingly critical success factor for PMs
will be their ability to distinguish soft-
ware myths from software facts, either
through experience, education, or ac-
quiring appropriate experts.

Although DoD currently has few in-
house experts in Evolutionary Acquisi-
tion of software-intensive systems, PMs
can employ several external talent
sources. Above all, if you're short on
such talent, fill the need expeditiously.
When you do, be sure to talk to those
resources regularly. Don't bet your pro-
ject or career on traditional sequential
processes, COTS promises, or believing
the 7 myths. That's the easiest way to
end up as the next Standish survey sta-
tistic.

Editor's Note: The authors welcome
guestions or comments on this article.
Contact Boehm at boehm@sunset.usc.
edu; Kind at pkind@ida.org; and Turner
at Rich.Turner@osd.mil,

PM : MAY-JUNE 2002 79

